
Machine Learning, 55, 5–29, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Reinforcement Learning Algorithm Based
on Policy Iteration for Average Reward:
Empirical Results with Yield Management
and Convergence Analysis

ABHIJIT GOSAVI agosavi@buffalo.edu
Department of Industrial Engineering, The State University of New York at Buffalo, 342 Bell Hall Box 602050,
Buffalo, NY 14260-2050, USA

Editor: Andrew Barto

Abstract. We present a Reinforcement Learning (RL) algorithm based on policy iteration for solving average
reward Markov and semi-Markov decision problems. In the literature on discounted reward RL, algorithms based
on policy iteration and actor-critic algorithms have appeared. Our algorithm is an asynchronous, model-free
algorithm (which can be used on large-scale problems) that hinges on the idea of computing the value function
of a given policy and searching over policy space. In the applied operations research community, RL has been
used to derive good solutions to problems previously considered intractable. Hence in this paper, we have tested
the proposed algorithm on a commercially significant case study related to a real-world problem from the airline
industry. It focuses on yield management, which has been hailed as the key factor for generating profits in the
airline industry. In the experiments conducted, we use our algorithm with a nearest-neighbor approach to tackle
a large state space. We also present a convergence analysis of the algorithm via an ordinary differential equation
method.

Keywords: reinforcement learning, average reward, policy iteration

1. Introduction

Markov decision problems (MDPs) are problems of decision making in which the deci-
sion maker has the objective of finding the optimal actions in the states visited by the
system—that is, to maximize the value of some performance metric, such as long-run
discounted reward or long-run average reward per unit time. Value iteration and policy it-
eration have remained as the methods of choice in designing Reinforcement Learning (RL)
algorithms (see Sutton & Barto, 1996; Bertsekas and Tsitsiklis, 1996 for textbook treat-
ment), especially when the decision-making problem has a Markovian or semi-Markovian
nature.

For the discounted reward criterion, the most popular algorithm is Q-Learning, which
closely follows value iteration in spirit. A policy iteration algorithm for discounted re-
ward can be found in Rummery and Niranjan (1994) and Sutton (1996). An extension of
Q-Learning, which was designed for MDPs, to discounted reward Semi-Markov Decision
Problems (SMDPs) can be found in Bradtke and Duff (1995). See also Chapter 6, Section 6.2

6 A. GOSAVI

of Bertsekas and Tsitsiklis (1996) for an account of “approximate policy iteration” algo-
rithms for discounted reward.

In the average reward case, algorithms such as R-Learning (see Schwartz, 1993), SMART
(see Das et al., 1999), Relaxed-SMART (see Gosavi, 1999, 2003), and the algorithm in
Abounadi, Bertsekas and Borkar (1998) have been proposed. All these algorithms use
some form of value iteration. In SMART and Relaxed-SMART, a form of the average
reward Bellman equation is directly used while the algorithm in Abounadi, Bertsekas, and
Borkar uses a distinct updating scheme based on a form of value iteration given in Bertsekas
(1995b) that has been proven to converge. Relaxed-SMART has been proven to converge
in Gosavi (2003). Relaxed-SMART and SMART work for both MDPs and SMDPs. Konda
and Borkar (1999) have presented an actor-critic algorithm for average reward.

In the RL literature, an algorithm based on policy iteration seems to be lacking for the
average reward case. In this paper, we discuss some of the difficulties in solving average
reward SMDPs and present a model-free, average-reward, asynchronous RL algorithm that
is based on policy iteration. The algorithm can be used to solve both MDPs and SMDPs.

It must be emphasized that the updating equations in the algorithm proposed here are
different from those in Das et al. (1999), Gosavi (2003), or Abounadi, Bertsekas, and Borkar
(1998). They are directly derived from policy iteration in classical dynamic programming.
Also, we must point out that the work of Konda and Borkar (1999), which follows policy
iteration in spirit, uses a totally different (although convergent) mechanism that has roots
in the classical actor-critic framework (see Sutton & Barto, 1996).

We also present a convergence analysis using an ordinary differential equation method.
Finally, we reinforce the theoretical convergence analysis with numerical experiments on a
real-life problem with a large state space. The selected problem domain is one from the field
of operations research, where RL has been used to solve difficult problems. The problem
studied in this paper is related to yield management, which has been hailed as the single
most important contributing factor to the success of airline industries in the last two decades
(see Davis, 1994 and Horner, 2000).

The SMDP is more general than the MDP because while calculating a given performance
metric (e.g., average reward and discounted reward), it takes into account the time spent by
the system in each state transition of the Markov chain. In the real world, more problems
tend to be SMDPs than MDPs because profits and costs are invariably tied to some time
frame.

Also, the long-run average reward criterion is an important metric in its own right. Some
of the pioneering work in this area can be attributed to Schwartz (1993) and Mahadevan
(1994, 1996a, 1996b). However, regular value iteration is not guaranteed to generate optimal
solutions in average reward SMDPs, which is the prime motivation for developing an RL
algorithm based on policy iteration. We shall explore this issue in some detail in this paper.

The rest of this paper is organized as follows. We begin with a discussion of the Markov
decision framework and RL algorithms in Section 2. We also discuss the need for an approach
based on policy iteration in the case of SMDPs in the average reward case. In Section 3,
we present our algorithm. In Section 4, we present the airline case study. In Section 5, we
present a convergence analysis of the new algorithm. Section 6 contains some concluding
remarks and some suggested directions for further research in this area.

A REINFORCEMENT LEARNING ALGORITHM 7

2. The Markov and semi-Markov decision framework

We shall concentrate in this paper on MDPs and SMDPs with a finite state space and a
finite action space. For a detailed discussion on MDPs and SMDPs, the reader is referred
to Puterman (1994). In what follows, we present a quick description of the notation that
we shall use in the rest of the paper. S will denote the finite state space of the problem,
A(i) will represent the finite set of actions allowed in state i , and r (i, a, j), p(i, a, j), and
t(i, a, j) will denote, respectively, the following three quantities associated with a transition
from state i to state j under the influence of action a: the immediate reward earned in the
transition, the probability of the transition, and the time spent in the transition.

Average reward for a unichain SMDP (see Puterman (1994) for a definition), starting
from state i and following policy π , can be mathematically expressed as:

ρ(i) = lim inf
T →∞

E
[∑T

k=1 r (xk, π (xk), xk+1) | x1 = i
]

E
[∑T

k=1 t(xk, π (xk), xk+1) | x1 = i
]

where xk is the state from which the kth jump of the Markov chain occurs and π (xk) denotes
the action selected in state xk when policy π is followed. It can be shown that the average
reward is independent of the starting state for unichain Markov chains. Also, an expression
for the average reward—for the case of MDPs—can be obtained from the above by setting
t(i, a, j) = 1 for all possible values of i , j , and a.

Dynamic programming (DP) is a powerful tool that can be used to solve MDPs and
SMDPs. Traditional DP techniques require the values of all the transition probabilities, the
knowledge of which is often very hard to obtain especially if (1) the system has a very
large state space and/or (2) the dynamics of the system are governed by complex transition
mechanisms (the complexity often depends on the number of random variables involved in
the system and the role they play in the dynamics of the system). Under such circumstances,
RL, which is a relatively new methodology, can be used. The so-called model-free (as op-
posed to model-based) algorithms of RL can solve MDPs without calculating the transition
probabilities. In many SMDPs, the transition probabilities may be available but the same
may not be true of transition times. Here too model-free RL can be used for solution pur-
poses. We next present an important and well-known theorem, which holds the key to a DP
solution to an SMDP.

Theorem 1. Given that the objective is to maximize the long-run average reward calcu-
lated over an infinite time horizon for any finite-state unichain SMDP, there exists a scalar
ρ∗ and a value function R∗(·) satisfying the following system of equations for all i ∈ S,

R∗(i) = max
a∈Ai

(
r̄ (i, a) − ρ∗y(i, a) +

∑
j∈S

p(i, a, j)R∗(j)

)
, (1)

such that the greedy policy π∗ formed by selecting actions that maximize the right-hand side
of the above equation is average reward optimal, where r̄ (i, a) is the expected immediate
reward when an action a is taken in state i, y(i, a) is the expected transition time in state i

8 A. GOSAVI

when action a is taken in state i , and p(i, a, j) is the probability of transition from state i
to state j under action a in one step.

Note, that by their definitions, r̄ (i, a) = ∑
j p(i, a, j)r (i, a, j) and y(i, a) = ∑

j
p(i, a, j)t(i, a, j). Also note that the scalar ρ∗, described in the statement of the theorem,
can be shown to be the maximum average reward that can be obtained from the SMDP.

2.1. Value iteration for MDPs

Theorem 1 provides us with a method to find the optimal solution to an SMDP. It is to be
noted that Theorem 1 reduces to the same result for the MDP case when y(i, a) is set to
1. In a method of successive approximations, we generally start with an arbitrary value for
the unknown vector R and use Eq. (1) repeatedly, as a transformation, to obtain successive
approximations of the vector R∗. The transformation can be expressed as:

R∗(i) ← max
a∈Ai

(
r̄ (i, a) − ρ∗y(i, a) +

∑
j∈S

p(i, a, j)R∗(j)

)
for all i. (2)

Transformation (2) cannot be used directly because it involves ρ∗, the optimal average
reward, which is unknown. In the MDP case, where y(i, a) = 1, if we set ρ∗ to 0, we have
what is called regular value iteration. Next, consider the transformation in value iteration:

R∗(i) ← max
a∈Ai

(
r̄ (i, a) +

∑
j∈S

p(i, a, j)R∗(j)

)
. (3)

If y(i, a) equals 1, the vector of values generated by transformation (2) and the vector
generated by transformation (3) would differ by a constant in every iteration, but would
yield the same policy. Transformation (2) is known to yield the optimal solution, i.e., produce
the maximum average reward. Hence value iteration, that is, transformation (3) can be used
for MDPs.

However, in the SMDP case, it is not mathematically correct to replace ρ∗ by 0, since the
transformation obtained with such as replacement is not necessarily equivalent to transfor-
mation (2). For instance, consider an SMDP with two states and two actions in each state
in which y(1, 1), y(1, 2), y(2, 1), and y(2, 2) are all unequal. Then the values, for any given
state i , generated from one application of (2) and the values generated from one application
of (3), will not differ by a constant. So, (3) and (2) will lead to different policies. Hence
(2), which is guaranteed to give an optimal solution, cannot be substituted for (3). For this
reason, an approximate version of value iteration has been suggested in the literature, which
we discuss next.

2.2. Value iteration for SMDPs

In value iteration for SMDPs, one has to “uniformize” the SMDP—thereby converting the
SMDP into an MDP. See Puterman (1994) and Bertsekas (1995a) for detailed discussions

A REINFORCEMENT LEARNING ALGORITHM 9

on this conversion process. The updating equation for the uniformized problem, which may
be used in value iteration, is as follows. For all i ∈ S,

R∗(i) ← max
a∈Ai

{
r̄ t (i, a) +

∑
j∈S

pt (i, a, j)R∗(j)

}
,

where the replacements for r̄ (i, a) and p(i, a, j) are denoted by r̄ t (i, a) and pt (i, a, j)
respectively and defined as:

r̄ t (i, a) = r̄ (i, a)/y(i, a),

pt (i, a, j) = ηp(i, a, j)/y(i, a), if i �= j,

and

pt (i, a, j) = 1 + η[p(i, a, j) − 1]/y(i, a), if i = j.

In the above, η should satisfy

0 ≤ η ≤ y(i, a)/{1 − p(i, a, i)}

for all a, i and j . It is clear that to be able to carry out such a “uniformization,” one needs
to know the transition probabilities. Consequently, an approach of this type is not very
suitable for a model-free RL implementation, which seeks to obtain a solution without
attempting to find the transition probabilities. The other way out of this difficulty is to use
an approximation of the optimal value of the average reward and use a relaxed version of
transformation (2). This is the central idea underlying SMART-based algorithms that rely
on the Bellman equation.

2.3. Policy iteration

Since value iteration for SMDPs involves a cumbersome transformation, it is only natural to
look towards the other technique of dynamic programming—policy iteration—for solution.
Fortunately, policy iteration for SMDPs is exact and neither requires prior knowledge of the
optimal average reward, nor does it require any “uniformization.” The idea in policy iteration
is to start with a randomly chosen policy, compute the value function associated with it, and
then use it to find an improved policy. The process continues until no further improvement is
possible. For algorithmic details of policy iteration, the reader is referred to Puterman (1994).
Policy iteration is a clean way of solving the SMDP since no “uniformization” is required.
As mentioned earlier, uniformization may be difficult when the transition probabilities are
not available.

10 A. GOSAVI

3. RL

The underlying idea in most RL schemes is to approximate the value function (either the
optimal value function or the value function associated with a given policy) using stochastic
approximation. In policy iteration, the value function associated with any given policy has
to be computed in every iteration, while in value iteration, the goal is to approximate the
value function associated with the optimal policy.

In RL, the optimal policy is determined via a reinforcement mechanism. In such a setting,
the decision maker can be viewed as an agent that selects actions in each state visited either
on a real-time basis or in a simulator. The feedback obtained from every action selected is
used to update the knowledge base of the agent. The knowledge base of the agent, usually,
contains the so-called Q-factors. By trial and error, with repeated reinforcements, the agent
learns the optimal policy. The book of Sutton and Barto (1996) describes this methodology
in great detail.

The Q-factor we are about to present is based on policy iteration and is defined in terms
of a given policy. For a state-action pair (i, a) for a policy π where a ∈ A(i):

Qπ (i, a) =
∑
j∈S

p(i, a, j)[r (i, a, j) − ρπ t(i, a, j) + Rπ (j)], (4)

where ρπ and Rπ are respectively the average reward and the value function associated with
the policy π . Using this definition, we can come up with a version of policy iteration in
terms of Q-factors. We shall present this version because the new algorithm presented in
this paper follows from it in a straightforward manner.

3.1. Q-factor based policy iteration for SMDPs under average reward

Now from the Bellman equation, we have that for a given policy π :

Rπ (i) =
∑

j

p(i, π (i), j)[r (i, π (i), j) − ρπ t(i, π (i), j) + Rπ (j)], for all i. (5)

From Eqs. (5) and (4), we have that

Rπ (i) = Qπ (i, π (i)), for all i. (6)

Using Eq. (6), Eq. (4) can be written as:

Qπ (i, a) =
∑
j∈S

p(i, a, j)[r (i, a, j) − ρπ t(i, a, j) + Qπ (j, π (j))],

for all i ∈ S and a ∈ U (i). (7)

Equation (7) is a Q-factor version of the equation used in policy iteration for policy evalu-
ation and is thus useful in devising a Q-factor version of policy iteration, which we present
next.

A REINFORCEMENT LEARNING ALGORITHM 11

Step 1: Set k = 1. Select a policy arbitrarily and denote it by πk . Let n be the number of
decision-making states.

Step 2: For the policy, πk , obtain the values of Qπk by solving the following system of linear
equations:

Qπk (i, a) =
n∑

j=1

p(i, a, j)[r (i, a, j) − ρπk t(i, a, j) + Qπk (j, πk(j))]

for each a ∈ U (i) and each i ∈ S. The unknowns are the Q-factors and ρπk . The linear
system above has one unknown more than the number of equation; the extra unknown is
ρπk . Solve it by setting any one Q-factor to 0.

Step 3: Generate a new policy πk+1, using the following relation:

πk+1(i) = arg max
u∈U (i)

Qπk (i, u).

Step 4: If the policy πk+1 is identical to policy πk , stop; else set k ← k + 1 and go back to
Step 2.

In the next section, we describe our RL algorithm in detail.

4. Q-P-Learning

Since the algorithm that we will develop in this section closely follows the spirit of policy
iteration, we will next describe it in terms of policy iteration as follows. Begin by selecting
a policy arbitrarily and estimate (using simulation) the average reward associated with it.
Thereafter, perform policy evaluation; that is, use an updating transformation based on (7)
in a simulator to evaluate the Q-factors associated with that policy. We refer to each policy-
evaluation step as a phase in the learning process in which the Q-factors of a particular
policy are learned.

What is done during a phase is essentially equivalent to the policy evaluation stage of
policy iteration. Then we go on to perform policy improvement, where we select our new
policy based on the Q-factors just generated. Before beginning a phase, we must first obtain
the average reward associated with the new policy (which can be done using simulation).
The old vector of Q-factors will now be called P-factors, (P for Policy), since these P-
factors will contain information about the policy which will be evaluated in the next phase.
Fresh Q-factors will be approximated in the next phase. Hence the name Q-P-Learning.
The step-by step details are in figure 1.

Some additional comments are in order in relation to figure 1.

Comment 1. The learning rate β needs to be decayed with the iteration. We can choose
β = 1/m. The value of mmax should increase with the number of phases. A rule such
mmax = 1000 + E2 can be used.

12 A. GOSAVI

Figure 1. A policy iteration based RL algorithm for computing average reward optimal policies for MDPs and
SMDPs.

Comment 2. Each action is chosen in each state with equal probability so that all actions
are tried sufficiently often in each state. This ensures that the simulation-based estimates of
the Q-factors converge to their correct values.

Comment 3. The algorithm described above uses value iteration in the policy evaluation
stage. This idea can be found in SARSA (see Sutton & Barto, 1996, pp. 145–148) and in the
DP literature in the modified policy iteration algorithm of Puterman and Shin (see Puterman,
1994). Section 6.2 of Bertsekas and Tsitsiklis (1996) discusses a method that employs
the same philosophy. They have called it “approximate (non-optimistic) policy iteration”
and have established bounds on its worst case behavior. Their analysis is performed for
the discounted problem and the stochastic shortest path problem. In particular they show
that their method is bound to converge in the presence of simulation noise and function
approximation noise, and that the policy generated by the policy update cannot be much
worse than the previous policy.

5. Case study

The deregulation of the airline industry in 1978 allowed airline companies to choose their
own market segments and routes and set their own fares as long as they complied with the

A REINFORCEMENT LEARNING ALGORITHM 13

safety and security regulations enforced by the Federal Aviation Administration (FAA).
With the fierce competition that ensued in the airline industry as a result of this, it was soon
realized that optimization techniques were needed for optimal use of the expensive resources
of these industries. American Airlines took a lead but all major air-carriers now use some
kind of optimization in controlling their operations. It is widely perceived that unless one
uses these techniques there is a strong possibility of losing market-share and going out of
business because one’s competition will put them to good use. The most important goal of
any airline company is that of maximizing the revenue obtained from the sale of tickets on
any given flight. This is referred to in the literature as yield management. It forms a crucial
aspect of airline logistics. According to a report from SIAM news (see Davis, 1994): “Yield
management . . . saved American Airlines $1.4 billion in the period from 1989 to 1992, about
50% more than its net profit of $892 million for the same period. Modeling and optimization
made the difference between profit and loss.” And according to a report (Horner, 2000) “By
1998, . . . the revenue management system at American Airlines was generating nearly $1
billion in annual incremental revenue. To put that figure into perspective, consider that the
airline’s total operating profit didn’t approach $1 billion until 1997.”

Seat allocation and overbooking are two of the most important aspects of the yield man-
agement problem, and the key to making profit lies in exercising control over the seat
allocation and the overbooking aspects. The problem considered here is a combined prob-
lem of seat allocation and overbooking having the following features: a single flight leg
with multiple fare classes, concurrent and random demand arrivals from the different fare
classes, class-dependent and random cancellations. Accommodating all these features is
computationally challenging because that makes it a large-scale and complex stochastic
optimization problem. Most models in the existing literature accommodate only a subset
of these features to make the model tractable. At the same time, because of the high stakes
involved, there is a need for an approach that accounts for all these factors and generates
optimal or near-optimal results. In fact, according to a recent review paper on revenue
management written by McGill and van Ryzin (1999): “Recently developed approximation
methods for dynamic programming and stochastic programming (RL) may be useful in
revenue management.” Hence RL obviously seems to have the potential for offering solu-
tions here. We use RL, using Q-P-Learning, on this problem accounting for all the factors
mentioned above. For an alternative RL approach to this problem (see Gosavi, Bandla &
Das, 2002).

The seat allocation problem has its roots in the airlines’ practice of selling seats within
the same cabin of a flight at different prices. There are differences in customers, and airlines
use these differences to sell tickets at different prices. A passenger who wants a lesser
number of stopovers or a passenger who arrives late in the booking process is made to pay
a higher fare. And this results in classifying passengers into different fare classes based on
their needs and the circumstances. A clever thing to do is to protect some seats from the
lower revenue fare classes in order to be able to satisfy demands from the higher revenue
classes since that helps in increasing the revenue. But then the obvious question that arises
is: what is the optimal level of protection?

The “overbooking” aspect adds a new dimension to this problem. It arises from the fact
that customers do cancel their tickets and often fail to show up at the flight time (no-shows).

14 A. GOSAVI

Airlines tend to “overbook” fights (sell more tickets than the number of seats available)
anticipating such events to avoid flying with empty seats. It may be noted that a seat in an
airplane (like a hotel room or vegetables in a supermarket) is a perishable item; its value
becomes null as soon as the flight takes off. However, associated with excessive overbooking
is the risk of not having enough seats for all the ticket holders. When this happens, airlines
deny (bump) boarding request to the extra ticket- holders and pay a penalty in two ways:
directly in the form of monetary compensations to the inconvenienced passengers, and
indirectly via loss of customer goodwill. Hence, a prudent choice of an overbooking policy
that maximizes the revenue is called for.

A primary factor used in classification is the time of the request for reservation. Passengers
who book in advance get discount fares; in other words they belong to lower fare classes.
Those who come later have to pay higher fares. If classification is carried out on the basis
of this factor alone, it is adequate to assume that passengers in different fare classes arrive
sequentially, i.e., passengers in the lowest classes arrive first, followed by passengers in the
next higher class and so on. However, another factor is also used in classification, which is
that of the itinerary of the passenger. To see how an origin-and-destination based (itinerary-
based or number of stop-overs based) passenger classification works, consider a single
flight leg from Dallas to New York. The flight in addition to carrying passengers whose
origin is Dallas and destination is New York, is likely to be carrying passengers from other
longer itineraries, such as San Juan-Miami-Dallas-New York, Phoenix-Dallas-New York,
and Tampa-Dallas-New York. If the passengers whose itinerary originates from Dallas form
the highest class, those flying from Miami (or Tampa) to New York via Dallas form the
middle class, and those flying from San Juan to New York via Miami and Dallas (and are on
the third leg of their itinerary) form the lowest fare class of passengers in the plane. See also
figure 2, which explains this idea. A circle in figure 2 represents the origin and the symbol
inside it indicates the class of the passenger originating at that point. The figure also shows
that usually itinerary-based classification yields two or three fare classes. It may be noted
that if this happens to be one of the factors used to classify passengers, sequential passenger
arrival will be a poor assumption and as suggested by Robinson (1995), a concurrent arrival
pattern must be assumed. Passenger classification in the real world is made on the basis of
several factors. We do not concern ourselves with how airlines classify passengers because
the model presented in our paper can be used for any method of passenger classification.

5.1. Literature overview

The process of maximizing revenue subject to constraints, such as the limits on the number
of fare classes available and the number of seats available in each class, was studied in
Belobaba (1989). This work used a generalized (multiperiod) version of the equation in
Littlewood (1972) to obtain allocations for more than two fare classes. Belobaba’s method,
named the EMSR (Expected Marginal Seat Revenue) model, assigns a fixed quantity of
seats to each fare class. Brumelle and McGill (1993), Curry (1990), van Ryzin and McGill
(2000), and Wollmer (1992) reported some shortcomings of the EMSR model. Glover et al.
(1982), Chatwin (1998), and Shlifer and Vardi (1975) are some of the other researchers
who have done significant work in this area. Howard (1971) cast the airline overbooking

A REINFORCEMENT LEARNING ALGORITHM 15

Figure 2. A schematic showing classification of customers based on the origin (circle) and the destination, in
one particular leg of an airline flight.

problem for a single fare class as an MDP and proposed the use of value iteration; however,
only very small problems can be solved with this approach because of its computational
inadequacies. Subramaniam, Stidham and Lautenbacher (1999) also model the problem as
an MDP by discretizing the time horizon and using a uniformization technique to convert
the SMDP to an MDP. They are able to make the problem tractable by assuming that the
cancellation probability is independent of fare class. We do not make this assumption and
we do not discretize the time. We retain the SMDP characteristics and consider most of the
complexities mentioned above. We then use Q-P-Learning to generate a solution for this
SMDP.

5.2. SMDP model

To model the yield-management problem as an SMDP, we first define the system state space.
Conservatively, for n fare classes, the system state (φ) can be denoted by the vector

φ = (c, s1, s2, . . . , sn, ψ1, ψ2, . . . , ψn, t),

where c represents the class of the most recent customer (among n possible classes) seeking a
ticket, s1, s2, . . . , sn represent the number of seats sold in n classes, ψk , for k ∈ {1, 2, . . . , n},
is a vector of size sk containing the times of arrivals of all the customers with a class k ticket,
and t represents the time remaining to departure of the flight. The cardinality of the finite
part of the state space can be shown to have an upper bound of n · Mn , where M is the
maximum number of customers in any given class with tickets for the plane. Note that for

16 A. GOSAVI

all practical purposes, M could be equal to the total flight capacity plus the overbooking
amount.

Clearly, a change in the system state is caused by any one of the following three events: (1)
a new customer arrives to the system requesting a ticket, (2) a cancellation occurs and (3) the
flight departs. Whenever a customer places a request for a seat, a decision needs to be made
regarding whether to accept or deny the request. The conservative state-space definition
given above satisfies the Semi-Markov property described in Section 2. The action space,
which is common to all the decision-making states is, A = {accept, deny}. It may be noted
that the decision-maker can address both the seat-allocation problem and the overbooking
aspects of the yield management problem by selecting a policy vector (π) of the size of the
state space that contains either “accept” or “deny” decision for every state visited by the
system. The metric used in this paper is long-run average reward.

5.2.1. Why average reward? The performance metric chosen to be used for the yield man-
agement problem is average reward although the problem can be studied as a finite horizon
problem. If studied as a finite horizon problem, the problem would become a stochastic
shortest path problem. The average reward problem has been shown to be mathematically
equivalent to the stochastic shortest path problem (see Bertsekas, 1995a). The average re-
ward problem can also be viewed as a discounted reward problem in which the discounting
factor tends to 1. However, it has been shown in Puterman (1994) on page 165 (in the first
paragraph of Chap. 8) that the convergence rates can become very small as the discounting
factor approaches 1. As a result, the theory of average reward algorithms should be devel-
oped separately. On page 331, Puterman writes that “the average reward criterion occupies
a cornerstone of queuing control theory especially when applied to computer systems and
communications networks . . . the criterion may also be appropriate for inventory systems
with frequent restocking decisions.”

5.3. EMSR heuristic

In what follows, we present a heuristic algorithm to benchmark the performance of our
algorithm. The heuristic that we present is the most widely used heuristic in the industry.
Belobaba (1989) developed the EMSR (Expected Marginal Seat Revenue) model using an
equation in Littlewood (1972). We refer to the EMSR model of Belobaba as the EMSR
(Expected Marginal Seat Revenue) heuristic. The strategy adopted in the EMSR heuristic
consists of determining booking limits for the different fare classes (using Littlewood’s
equation). When a customer belonging to a particular class requests a ticket in a particular
class, he/she is given a reservation only if the number of seats sold in that class is less than
the booking limit for that class.

To obtain the booking limits for any given class, Littlewood’s equation is solved to obtain
the unknown quantities Si

j for i > j , the equation being:

P
(
Xi > Si

j

) = f j/ fi j = 1, . . . , k, (8)

where Xi denotes the number of requests for class i that will arrive in the booking horizon,
Si

j denotes the number of seats to be protected from class j for higher class i , fi and f j

A REINFORCEMENT LEARNING ALGORITHM 17

are the fares for the classes i and j respectively, and k is the number of classes. Once the
quantities Si

j are obtained, the booking limit for a class j may be obtained by:

L j = C −
∑
i> j

Si
j , (9)

where C is the capacity of the plane. Cancellations and no-shows are incorporated in the
EMSR heuristic by multiplying the capacity of the aircraft by an overbooking factor. Thus,
if C is the capacity of the flight and p is the probability of cancellation, then the overbooking
factor is given by 1/(1 − p) and the modified capacity of the aircraft is given by C/(1 − p).

A strong merit of Littlewood’s approach is that all that is needed for it is the solution of
a simple linear equation. If no overbooking or cancellations are considered, Littlewood’s
solution gives near optimal results. However, when we consider additional modeling as-
sumptions such as overbooking and cancellations, Littlewood’s approach starts deviating
from optimality. Under these assumptions, it becomes necessary to use more powerful
models such as the MDP and the SMDP.

5.4. Results

In this section, we describe the sample problems selected for numerical analysis of Q-P-
Learning. We first discuss some of the implementational issues of function approximation.

5.4.1. Function approximation. The conservative definition of the state space makes it
uncountably infinite. We hence need a function approximation scheme that helps us encode
the state space keeping its important features intact. Finding a suitable function encoder is
a challenging task and the key to finding it frequently lies in the problem structure. After
considerable experimentation, we found a scheme that relates to the revenue earned in a
flight and captures the salient parts of the state space adequately (the problem is after all a
revenue management problem). We shall describe the scheme below.

We denote our state space by {c, P I } where P I is defined below and depends on the
number of seats sold in each class, while c denotes the class of the current customer. It is
clear that acceptance and rejection of a passenger have a direct bearing on the class of the
customer and how much revenue has already been earned in that flight. Hence to quantify
the dollar value in the current number of bookings, we define a “payload index” (PI) as:

P I =
∑N

i=1 Fai SSi

D
. (10)

In the above equation, Fai denotes the fare of the i th class, SSi denotes the seats sold in
the i th class and N denotes the number of classes. D denotes a factor that simply reduces
the range of the numerator. We have a continuous state space here since PI is a continuous
variable. We handle it using a nearest-neighbor approach using the following rule. The state
corresponding to the nearest integer to the actual value of PI is updated. Thus we actually
update only a finite set of values. The payload index, it is to be understood, is proportional

18 A. GOSAVI

to the total revenue of the company so far and consequently keeps changing with time. It
also retains the dynamic nature of the actual state space.

5.4.2. Experiments. In order to evaluate the performance of Q-P-Learning, we studied a
set of sample seat allocation problems with the following characteristics.

1. The flight has three fare classes and the fare structure is represented by the vector
F S = (f1, f2, f3, b), where fi is the fare of the i th class, and b is the bumping cost.
A lower value of i stands for a lower revenue fare class. Two different sets of fare
structures—F S1 and F S2—were considered.

2. The customer arrival process is Poisson with parameter λ.
3. The capacity of the aircraft is C .
4. The customer distribution for class i ∈ {1, 2, 3} is represented by the vector CD =

(p1, p2, p3), where pi is the probability of a customer belonging to the i th class. Clearly,
p1 + p2 + p3 = 1.

5. Every customer belonging to class i has a probability of pi
c of canceling the trip and the

time of cancellation is uniformly distributed between the time of sale and the time of
flight departure.

6. A customer who decides to cancel his/her ticket pays a penalty depending on the time
remaining for flight departure. So if he/she has paid a fare of F dollars, and the time
remaining is t in the horizon of length H , then the penalty paid = F(H − t)/H. The
penalty calculation depends on the airline policies, which vary with the airline and even
the time of the year. The formula used above is not the most general model for penalty
calculation; however, any model can be easily used in a simulator.

Table 1 summarizes all the numerical problems that were examined using the P-Q-Learning.
The results were averaged over 10 runs, where each simulation run lasted for 1 million time
units (several thousand flights). In Table 1, ρQ-P-Learning, ρQ-Learning, and ρEMSR denote
respectively the revenue generated (in $) per unit time by using the Q-P-Learning policy,

Table 1. Sample problems showing a comparison of the average revenue using EMSR, Q-P-Learning, and
Q-Learning. Im denotes the improvement of Q-P-Learning over EMSR.

F S1 = (100, 175, 250, 300), F S2 = (199, 275, 350, 400)
CD = (0.7, 0.2, 0.1), λ = 1.4, Horizon = 100 days, Capacity = 100 seats

p1
c = (0.1, 0.1, 0.1), p2

c = (0.1, 0.2, 0.3), p3
c = (0.15, 0.2, 0.25)

Case FSi pi
c D ρEMSR ρQ-P-Learning Im (%) ρQ-Learning

1 FS1 p1
c 500 134.43 ± 0.74 138.8 ± 0.63 3.2 135.67 ± 0.45

2 FS2 p1
c 1000 246.61 ± 1.58 257.62 ± 1.51 4.5 250.12 ± 0.12

3 FS1 p2
c 500 125.64 ± 0.87 141.61 ± 0.64 12.7 135.45 ± 0.23

4 FS2 p2
c 1000 226.28 ± 1.81 262.51 ± 0.96 16 240.11 ± 0.68

5 FS1 p3
c 500 131.00 ± 1.63 144.58 ± 0.78 10.4 134.78 ± 0.19

6 FS2 p3
c 1000 236.67 ± 3.43 266.47 ± 0.86 12.6 246.10 ± 0.76

A REINFORCEMENT LEARNING ALGORITHM 19

the Q-Learning policy, and the EMSR heuristic policy. The 95% confidence intervals on
the revenues are also shown. The countable part of the state space of the largest problem
considered here is of the order of 109 and improvement over EMSR of up to 16 percent is
seen. Q-Learning has done reasonably well against EMSR. In comparison to our algorithm,
however, Q-Learning has not done very well, which can be easily explained. Q-Learning is
not designed for average reward problems, and that it is able to outperform EMSR speaks
for its robustness. Q-learning was done with the discounting factor set to 0.99.

6. Convergence analysis

Two major issues are involved in showing the convergence of Q-P-Learning. First, it has
to be established that Step 3 can be successfully completed in a finite number of iterations.
Secondly, it has to be shown that this occurs in the asynchronous conditions of the simulator.

Two approaches to show convergence in Step 3, in the presence of noise, are the “reducing
cube-size” method of Bertsekas and Tsitsiklis (1996) and the Ordinary Differential Equation
method of Kushner and Clark (1978). We shall show convergence using the latter, although
it can also be done via the former. Convergence under asynchronous conditions follows from
Borker (1998). In the next section, we shall prove the convergence of Q-P-Learning. This
convergence result appears as Theorem 3. We next state an important result from Kushner
and Clark (1978) that forms the starting point of the proof for Theorem 3.

Theorem 2. Consider a stochastic approximation scheme given by:

xk+1
l = xk

l + ak
(

f
(
xk

l

) + wk
)
, l = 1, 2, . . . , n, (11)

where xk
l denotes the lth element of the iterate in the kth iteration, ak denotes the learning

rate at the kth iteration, f denotes the function on the vector xk from Rn to Rn, and wk

denotes a noise term in the kth iteration.
Assume the following conditions to hold:

Condition 1. The function f is Lipschitz continuous.
Condition 2. The learning rate ak satisfies the following conditions:

∞∑
k=0

ak = ∞ and
∞∑

k=0

(ak)2 < ∞.

Condition 3.

E[wk | x0, x1, . . . , xk, w0, w1, . . . , wk−1] = 0,

E[‖wk‖2 | x0, x1, . . . , xk, w0, w1, . . . , wk−1] <= A + B‖xk‖2,

for some constants A and B, and where ‖.‖ indicates some norm.
Condition 4. The iterates (xk) are bounded, and

20 A. GOSAVI

Condition 5. The ordinary differential equation (ODE)

dx(t)

dt
= f (x(t))

has a unique globally asymptotically stable equilibrium point x∗,

then the sequence {xk} converges to x∗.

Remark 1. The iterate in the theorem presented above could be the Q-factor with l denoting
a state-action pair.

Remark 2. The second condition contains standard rules for learning rates, without which
“averaging”—that helps us avoid having to compute the transition probabilities—cannot be
achieved. Essentially, the third condition says that the conditional mean of the noise term
is 0, and its conditional variance is finite.

Remark 3. All the result given above says is that the sequence of iterates (Q-factors in
our case) will converge to a fixed point.

Remark 4. The theorem above can be shown to hold for asynchronous iterates under the
additional assumption (see Borkar, 1998) that there exists some C > 0 such that:

lim inf
k→∞

q(k, l)

k + 1
≥ C,

where q(k, l) is the number of times the state-action pair l has been tried till the kth step in
the learning process. This condition ensures that the difference between the number of times
an iterate has been updated and the same number for any other iterate is a finite number. The
ODE analysis in Borkar (1998) shows that even under asynchronous conditions, there exists
a similar ODE, and convergence is guaranteed under asynchronous conditions as well.

We are now at a position, where with some additional work, we can use the results given
above to prove that our algorithm will converge to an optimal solution. We next state our
main result.

Theorem 3. The algorithm described in Section 3 generates an optimal solution to the
SMDP in question under the following assumption:

Assumption A: There exists a state s ∈ S, where S is the set of all states in the underlying
Markov chain, such that for some integer m > 0, and for all initial states and for all
stationary policies, s is visited with positive probability at least once in the first m jumps of
the Markov chain.

Assumption A restricts the above result to problems with at least one recurrent state. The
Q-factors of that state may have to be fixed to some value.

A REINFORCEMENT LEARNING ALGORITHM 21

Proof of Theorem 3: To prove this result, we need to establish two facts: (1) the Q-factors
generated in the policy evaluation stage of our algorithm, after a finite number of iterations,
reach values which enable us to perform Step 4 (policy improvement step) of the algorithm
correctly—that is, enable us to select the same policy in the policy improvement step that
would be selected by the limiting values of the Q-factors of Step 3. (2) The estimate of ρ in
Step 2 does not affect the algorithm’s path. Now, in all other respects, the algorithm mimics
policy iteration, which is proven to converge Puterman (1994).

The core of the policy evaluation stage can be expressed by the following transformation:

Qk+1(i, a) ← Qk(i, a) + β
[
r
(
i, a, ek

i,a

) − ρt
(
i, a, ek

i,a

)
+ Qk

(
ek

i,a, π
(
ek

i,a

)) − Qk(i, a)
]
, (12)

where π is the policy being evaluated and where the term ek
i,a is a random variable that

denotes the state to which the Markov chain jumps when action a is taken in the kth
decision-making epoch and the system state is i . In this context, we can also define a
transformation F on the vector Qk as follows:

F(Qk)(i, a) =
∑

j

p(i, a, j)[r (i, a, j) − ρt(i, a, j) + Qk(j, π (j)]. (13)

It can be shown that the scheme in (12) is of the form given in Theorem 2. The details of
this are relegated to Appendix A.2.

Then all we need to do is to show that the conditions of Theorem 2 are satisfied. The
condition of Lipschitz continuity (Condition 1) can be shown from the fact that the map
f is linear everywhere in Q. Condition 2 can be shown by a learning rate (β) such as
1/k. Condition 3 stems from the fact that the noise term w is the difference between a
random value and its mean. Its variance can be easily bounded by a function of the square
of the iteration. (Also its variance is bounded since the iterate Q itself is bounded, which is
Condition 4.)

To prove boundedness (Condition 4) of the Q-factor, one has to show that the transfor-
mation (13) has a contraction property. Under assumption A, it is not hard to show that
this is the case using a result from Bertsekas and Tsitsiklis (1996) and Littman (1996) (see
Appendix A.1 for details). Then it can be shown that F is a pseudo-contraction (see p. 155
of Bertsekas & Tsitsiklis, 1996) since it is a contraction. Using the property of pseudo-
contraction, it is not difficult to prove boundedness of the iterate via a standard result from
Tsitsiklis (1994).

Since the transformation F is a contraction under Assumption A of Theorem 3, the
differential equation d Q(t)

dt = F(Q(t))−Q(t) has a unique asymptotically stable equilibrium
point, which is the fixed point of F(Q). This proves that Condition 5 is satisfied.

Thus we have shown using Theorem 2 that the algorithm actually converges to the fixed
point of F(Q). It remains to be shown that the algorithm makes the Q-factors converge
to the Q-factors associated with the policy. Now since the transformation F(Q) is the
Bellman transformation associated with the policy (see Step 2 of policy iteration details
of Section 3.1), its fixed point is indeed the vector of Q-factors associated with the policy
being evaluated.

22 A. GOSAVI

Finite truncation of the policy evaluation phase. Since Step 3 must terminate in a finite
number of iterations, the estimates of the Q-factors obtained will not equal their limiting
values. It is to be understood that if the estimated Q-factors are far from their actual values,
then the policy selected in the next visit to Step 2 may be different from that selected with the
limiting values of the Q-factors. However, with a finite termination of the policy evaluation
phase, we shall never obtain the “limiting” estimates. The fact that limiting values exist
arises from Theorem 2, which states that the sequence converges.

Let Q∗
1(i) and Q∗

2(i) denote respectively the highest and the second highest limiting values
of the Q-factors for state i ∈ S. Let Q̃k

1(i) and Q̃k
2(i) denote the same for the estimates in

the kth iteration. Further, let ek
l (i) denote the absolute value of the difference in the actual

value and the estimate in the kth iteration of Q∗
l (i), where l = 1, 2 and i ∈ S. That is, for

l = 1, 2,

ek
l (i) = ∣∣Q̃k

l (i) − Q∗
l (i)

∣∣.
We, then, have four cases. For each i ∈ S and any finite k

Case 1. Q̃k
1(i) = Q∗

1(i) − ek
1(i), and Q̃k

2 = Q∗
2(i) + ek

2(i),
Case 2. Q̃k

1(i) = Q∗
1(i) − ek

1(i), and Q̃k
2 = Q∗

2(i) − ek
2(i),

Case 3. Q̃k
1(i) = Q∗

1(i) + ek
1(i), and Q̃k

2 = Q∗
2(i) + ek

2(i), and
Case 4. Q̃k

1(i) = Q∗
1(i) + ek

1(i), and Q̃k
2 = Q∗

2(i) − ek
2(i).

Let D(i) = Q∗
1(i) − Q∗

2(i) for all i ∈ S.
We now claim that for a given state i , in the kth iteration, if each of ek

1(i) and ek
2(i) is less

than D(i)/2, then Q̃k
1(i) > Q̃k

2(i) for all i . This will imply that if the policy evaluation is
terminated after k iterations, the correct policy will be selected in Steps 4 and 2.

Let us consider Case (1). What we are about to show can be shown for each of the other
Cases. For any i ∈ S and any finite k,

Q̃k
1(i) − Q̃k

2(i) = Q∗
1(i) − Q∗

2(i) − ek
2(i) − ek

1(i) from Case (1)

= D(i) − (
ek

1(i) + ek
2(i)

)
> D(i) − D(i) = 0.

This implies that for every i ∈ S and any finite value of k

Q̃k
1(i) > Q̃k

2(i),

which proves our claim.
Now, from Theorem 2, it follows that for each i ∈ S,

lim
k→∞

Q̃k
1(i) = Q∗

1(i), and lim
k→∞

Q̃k
2(i) = Q∗

2(i).

Hence, for a given ε > 0, there exists a k1 such that for all k ≥ k1∣∣Q̃k
1(i) − Q∗

1(i)
∣∣ < ε.

A REINFORCEMENT LEARNING ALGORITHM 23

Similarly, for a given ε > 0, there exists a k2 such that for all k ≥ k2∣∣Q̃k
2(i) − Q∗

2(i)
∣∣ < ε.

Now, selecting ε = D(i)/2 (where D(i) must be greater than 0; note that when D(i) = 0,
both actions are equally good and the problem is trivial, and by its definition D(i) cannot
be less than 0) and K ≡ max{k1, k2}, we have that for every i ∈ S and all k ≥ K ,

∣∣Q̃K
1 (i) − Q∗

1(i)
∣∣ < ε = D(i)/2,

that is, for every i ∈ S and all k ≥ K ,

ek
1(i) < D(i)/2.

Similarly, it follows by using the same ε that, for every i ∈ S and all k ≥ K ,

ek
2(i) < D(i)/2.

Then from the claim above, it follows that the correct policy will be selected in the policy
improvement stage with a number of iterations equaling or exceeding K . But K is a finite
number. (The analysis presented above can be extended easily to three or more actions.)
Thus we are done with ensuring that finite termination of policy evaluation with a suitable
number of iterations leads to the correct policy being selected in the policy improvement
step.

Incomplete evaluation of ρ. Step 2 of the algorithm (see figure 1) involves the calculation of
the estimate of the average reward of a given policy via simulation. The estimate is Inexact,
and it remains to be shown that the error introduced in the Q-factors due to this can be made
arbitrarily small. If this can be shown, our proof of Theorem 3 will be complete.

Let us denote the actual average reward of a policy by ρ∗ and the estimate with k
replications by ρk . Let Qk(i, a) denote the Q-factor associated with state-action pair (i, a)
in the kth iteration of policy evaluation of the algorithm. Let Q̄k(i, a) denote the same factor,
when the actual value of ρ is used. Let us define O(β2) as a function of the order of β2 or
higher powers of β. We now claim that:

|Qk(i, a) − Q̄k(i, a)| ≤ O(β2) for all (i, a) (14)

if Q0(i, a) = Q̄0(i, a) for all values of (i, a). This will ensure that by selecting a suitable
small value for β, the difference between the Q-factor that uses an estimate of ρ and the
one that uses the actual value of ρ can be made arbitrarily small. We shall use an induction
argument to prove our claim.

From Step 3c of the algorithm it follows that:

Qk+1(i, a) = (1 − β)Qk(i, a) + β[r (i, a, j) − ρt(i, a, j) + Qk(j, b)]. (15)

24 A. GOSAVI

where b depends on the policy being evaluated. If the actual value of ρ, which we denote
by ρa , is used, the transformation in Step 3c can be written as:

Q̄k+1(i, a) = (1 − β)Q̄k(i, a) + β[r (i, a, j) − ρat(i, a, j) + Q̄k(j, b)] (16)

It follows from the above and from Q0(i, a) = Q̄0(i, a) for all values of (i, a) that

Q1(i, a) − Q̄1(i, a) = β[ρ − ρa]t(i, a, j),

which implies that:

|Q1(i, a) − Q̄1(i, a)| = β|ρ − ρa|t(i, a, j). (17)

In our algorithm, ρ is estimated by sampling (independent replications in a simulator) and
the strong law of large numbers (see Law & Kelton, 1999) applies. From the strong law of
large numbers, it follows that

|ρ − ρa|
can be made arbitrarily small. Therefore, for a given value of β > 0, there exists a number
of samples (replications), such that:

|ρ − ρa| < β. (18)

From the above, line (17) can be written as:

|Q1(i, a) − Q̄1(i, a)| = β|ρ − ρa|t(i, a, j) < ββt(i, a, j) = O(β2),

which proves our claim in inequality (14) when k = 0. Now, assuming that the claim is true
when k = n, we have that:

|Qn(i, a) − Q̄n(i, a)| ≤ O(β2). (19)

From transformations (15) and (16), we can write that:

Qn+1(i, a) − Q̄n+1(i, a) = (1 − β)[Qn(i, a) − Q̄n(i, a)] + β[ρ − ρa]t(i, a, j)

+ β[Qn(j, b) − Q̄n(j, b)].

From the above, one has that:

|Qn+1(i, a) − Q̄n+1(i, a)| ≤ (1 − β)|[Qn(i, a) − Q̄n(i, a)]| + β|[ρ − ρa]|t(i, a, j)

+ β|[Qn(j, b) − Q̄n(j, b)]|
< |[Qn(i, a) − Q̄n(i, a)]| + β|[ρ − ρa]|t(i, a, j) (20)

+ |[Qn(j, b) − Q̄n(j, b)]|
≤ O(β2) + ββt(i, a, j) + O(β2)

= O(β2).

A REINFORCEMENT LEARNING ALGORITHM 25

Line (21) follows from inequalities (19) and (18). From the above, our claim is proved for
k = n + 1, which implies that the claim is true for any k. Since β is a small quantity, the
square of β is even smaller. By choosing a suitable value for β, the error in the Q-factors
(due to the use of an estimate of ρ) can be made arbitrarily small. The proof of Theorem 3
is thus complete.

7. Conclusions

In this paper, an asynchronous RL algorithm, which is based on policy iteration, for solving
MDPs and SMDPs for long-run average reward was presented. An algorithm based directly
on policy iteration for the average reward case was missing in the literature. The algorithm is
especially useful in SMDPs, where the value iteration procedure is approximate. It may be
concluded that the algorithm performed satisfactorily on a large-scale problem from the real
world and was able to clearly outperform a widely used heuristic in that area. Theoretical
convergence of the algorithm was also shown via the rigorous ODE method. Extending this
algorithm to partially observable Markov decision problems (POMDPs), and testing this
algorithm on other industrial problems are interesting topics for further research.

A. Appendices

A.1. Contraction Property of transformation (13)

Theorem 4. Consider the transformation (13) under assumption A of Theorem 3. There
exists a vector ξ such that mapping F is a contraction mapping with respected to a weighted
sup-norm ‖.‖ξ .

Comment: It must be emphasized that the result we are about to present holds for the SMDP.
A shortest stochastic path problem is invoked only for the sake of establishing a relation for
the transition probabilities of our SMDP—a relation that can be used to prove the result.
The proof is due to Littman (1996) and was also independently discovered by Bertsekas and
Tsitsiklis (1996) (p. 23, Proposition 2.2). Even though, in the literature, the proof has been
quoted in the shortest stochastic path context, it can be and has been used elsewhere because
it pertains to the mapping. Any average reward problem under assumption A of Theorem
3, can be viewed as a stochastic shortest path problem (SSPP) by viewing successive visits
to any recurrent state in the average reward problem (see Assumption A of Theorem 3) as
cycles, each of which can be considered as a trajectory of an SSPP; the termination state
of the latter is a recurrent state in the average reward problem. The transition probabilities
do not change in their values. This result is related to the transition probabilities and hence
will apply to any problem with the same transition probabilities.

Proof: We first consider a new, fictitious shortest stochastic path problem, whose transition
probabilities are identical to the SMDP under consideration (as discussed above this is
always possible under assumption A), but all the immediate transition costs are −1 and the
immediate transition times are 1.

26 A. GOSAVI

Then we have that for all i = 1, 2, . . . , n and stationary policies µ,

D(i, a) = −1 + min
v∈U (j)

∑
j

p(i, a, j)D(j, v) ≤ −1 +
∑

j

p(i, µ(i), j)D(j, µ(j)),

(21)

where D(i, a) is the Q-factor for the state-action pair (i, a). Now setting µ to π , the policy
being evaluated in map (13), we can write (21) as:

D(i, a) ≤ −1 +
∑

j

p(i, π (i), j)D(j, π (j)). (22)

We shall make our notation a little more compact by replacing (i, a) by k and (j, π (j)) by l,
where k and l denote the state-action pairs and take values in {1, 2, 3, . . . , N }. Thus D(i, a)
will be replaced by D(k). Let us now define a vector ξ as follows for all k ∈ {1, 2, 3, . . . , N }:

ξ (k) = −D(k).

Then for all k, we have from the definition of D(k) above (Eq. (22)), D (k) ≤ −1, which
implies that ξ (k) ≥ 1 for k = 1, 2, 3, . . . , N . For all stationary policies µ, we then have
from (22) that for all k,

∑
j

p(i, π (i), j)ξ (l) ≤ ξ (k) − 1 ≤ ζ ξ (k), (23)

where ζ is defined by:

ζ = max
k=1,2,...,N

ξ (k) − 1

ξ (k)
< 1, (24)

where the last inequality follows from the fact that ξ (k) ≥ 1. Thus we have:

∑
j

p(i, π (i), j)ξ (l) ≤ ζ ξ (k), (25)

which is true of the transition probabilities of the SMDP. We now turn our attention to the
SMDP in question. From the definition of transformation F in Eq. (13), we can write:

F Q1(i, a) − F Q2(i, a) =
∑

j

p(i, π (i), j)[Q1(j, π (j)) − Q2(j, π (j))]. (26)

Using our compact notation, we can write the above as:

F Q1(k) − F Q2(k) =
∑

j

p(i, π (i), j)[Q1(l) − Q2(l)]. (27)

A REINFORCEMENT LEARNING ALGORITHM 27

Then we have that:

|FQ1(k) − FQ2(k)| ≤
∑

j

p(i, π (i), j)|Q1(l) − Q2(l)|

≤
∑

j

p(i, π (i), j) max
l

|Q1(l) − Q2(l)|

=
∑

j

p(i, π (i), j)ξ (l)‖Q1 − Q2‖ξ

≤ ζ ξ (k)‖Q1 − Q2‖ξ ,

where we define the weighted max norm of X (k) with respect to ξ as:

‖X‖ξ = max
k

|X (k)|
ξ (k)

.

From the above, we can write:

|FQ1(k) − FQ2(k)|
ξ (k)

≤ ζ‖Q1 − Q2‖ξ .

Since the above holds for all values of k, it also holds for the value of k for which its left
hand side is maximized. In other words, we have that:

‖FQ1 − FQ2‖ξ ≤ ζ‖Q1 − Q2‖ξ ,

which proves the result.

A.2. A part of the proof of Theorem 3

We first need to define the functions f and w, which appear in Theorem 2, in terms of our
algorithm.

Let us define a transformation H on the same vector as follows:

H (Qk)(i, a) = [
r
(
i, a, ek

i,a

) − ρt
(
i, a, ek

i,a

) + Qk
(
ek

i,a, π
(
ek

i,a

)]
,

Now if we define the noise term wk as:

wk = H (Qk) − F(Qk),

and if we define a function f as:

f (Qk) = F(Qk) − Qk,

28 A. GOSAVI

then we can write the updating transformation in our algorithm (Eq. (12)) as:

Qk+1(i, a) = Qk(i, a) + β[f (Qk) + wk],

which is of the same form as the updating scheme defined for Theorem 2.

Acknowledgments

The author would like to thank the Action Editor—Professor Andrew Barto—and the three
anonymous reviewers for their comments. The author also thanks Jane M. Fraser for her help
in reading the manuscript and making helpful suggestions. Finally, the author acknowledges
support from the National Science Foundation Grant No: DMI:0114007.

References

Abounadi, J., Bertsekas. D., & Borkar, V. (1998). Learning algorithms for Markov decision processes with average
cost. Technical Report, LIDS-P-2434, MIT, MA.

Belobaba, P. (1989). Application of a probabilistic decision model to airline seat inventory control. Operations
Research, 37, 183–197.

Bertsekas, D. (1995a). Dynamic programming and optimal control. Belmont, MA: Athena Scientific.
Bertsekas, D. (1995b). A new value iteration method for the average cost dynamic programming problem. Technical

Report LIDS-P-2307, MIT, MA.
Bertsekas, D., & Tsitsiklis, J. (1996). Neuro-dynamic programming. Belmont, MA: Athena Scientific.
Borkar, V. (1998). Asynchronous stochastic approximation. SIAM Journal of Control and Optimization, 36:3,

840–851.
Bradtke, S., & Duff, M. (1995). Reinforcement learning methods for continuous-time Markov decision problems.

In Advances in Neural Information Processing Systems 7. Cambridge, MA: MIT Press.
Brumelle, S., & McGill, J. (1993). Airline Seat Allocation With Multiple Nested Fare Classes Operations Research,

41, 127–137.
Chatwin, R. (1998). Multiperiod Airline Overbooking With A Single Fare Class. Operations Research, 46:6,

805–819.
Curry, R. (1990). Optimal airline seat allocation with fare classes nested by origins and desitnations. Transportation

Science, 24, 193–204.
Das, T., Gosavi, A., Mahadevan, S., & Marchalleck, N. (1999). Solving semi-Markov decision problems using

average reward reinforcement learning. Management Science, 45:3, 560–574.
Davis, P. (1994). Airline ties profitability yield to management. SIAM News, 27:5.
Glover, F., Glover, R., Lorenzo, J., & McMillan, C. (1982). The passenger-mix problem in the scheduled airlines.

Interfaces, 12, 73–80.
Gosavi, A. (1999). An Algorithm for Solving semi-Markov Decision Problems Using Reinforcement Learning:

Convergence Analysis and Numerical Results. Unpublished Ph.D. Dissertation, Department of Industrial and
Management Systems Engineering, University of South Florida, Tampa, FL.

Gosavi, A. (2003). A Reinforcement Learning Algorithm for Solving Markov and Semi-Markov Decision Problems
Under Long-Run Average Cost. European Journal of Operational Research, to appear.

Gosavi, A., Bandla, N., & Das, T. (2002). Airline seat allocation among multiple fare classes with overbooking.
IIE Transactions, 34:9, 729–742.

Horner, P. (2000). Mother, father of invention produce golden child: Revenue management— A Sabre story. ORMS
Today, 27:3, 75–77.

Howard, R. (1971). Dynamic probabilistic systems Volume II: Semi-Markov decision processes. New York, NY:
John Wiley and Sons.

A REINFORCEMENT LEARNING ALGORITHM 29

Konda, V., & Borkar, V. (1999). Actor-critic type learning algorithms for Markov decision processes. SIAM Journal
on Control and Optimization, 38:1, 94–123.

Kushner, H., & Clark, D. (1978) Stochastic approximation methods for constrained and unconstrained systems.
New York, NY: Springer Verlag.

Law, A., & Kelton, W. (1999). Simulation modeling and analysis, 3rd edition. New York, NY: McGraw Hill.
Littlewood, K. (1972). Forecasting and control of passenger bookings. In Proceedings of the 12th AGIFORS

(Airline Group of the International Federation of Operational Research Societies) Symposium (pp. 95–117).
Littman, M. (1996). Algorithms for sequential decision-making. Unpublished Ph.D. Thesis, Brown University,

Providence, R.I.
Mahadevan, S. (1994). To discount or not to discount: A case study comparing R-learning and Q-learning. In

Proceedings of the 11th International Conference on Machine Learning (pp. 164–172). New Brunswick, NJ.
Mahadevan, S. (1996a). Average reward reinforcement learning: Foundations, algorithms, and empirical results.

Machine Learning, 22:1, 159–195.
Mahadevan, S. (1996b). An average-reward reinforcement learning algorithm for learning bias-optimal policies.

In Proceedings of the 13th National Conference on Artificial Intelligence (pp. 875–880). Cambridge, MA: MIT
Press.

McGill, J., & van Ryzin, G. (1999). Revenue management: Research overview and prospects. Transporation
Science, 33:2, 233–256.

Puterman, M. (1994). Markov decision processes. New York, NY: Wiley Interscience.
Robinson, L. (1995). Optimal and approximate control policies for airline booking with sequential nonmonotonic

fare classes. Operations Research, 43, 252–263.
Rummery, G., & Niranjan, M. (1994). On-line Q-Learning using connectionist systems. Technical Report CUED/F-

INFENG/TR 166. Engineering Department, Cambridge University, England.
Schwartz, A. (1993). A reinforcement learning method for maximizing undiscounted rewards. In Proceedings of

the Tenth Annual Conference on Machine Learning (pp. 298–305). Morgan Kaufmann.
Shlifer, E., & Vardi, Y. (1975). An airline overbooking policy. Transportation Science, 9, 101–114.
Subramaniam, J. Stidham, S., & Lautenbacher, C. (1999). Airline yield management with overbooking, cancella-

tions and no-shows. Transportation Science, 33:2, 147–167.
Sutton, R. (1996). Generalization in reinforcement learning: Successful examples using sparse coarse coding. In

Advances in Neural Information Processing Systems 8 (pp. 1038–1044). Cambridge, MA: MIT Press.
Sutton, R.S., & Barto, A. (1996). Reinforcement learning. Cambridge, MA: MIT Press.
Tsitsiklis, J. (1994). Asynchronous stochastic approximation and Q-Learning. Machine Learning, 16, 185–202.
van Ryzin, G., & McGill, J. (2000). Revenue management without forecasting or optimization: An adaptive

algorithm for determining seat protection levels. Management Science, 46, 568–573.
Wollmer, R. (1992). An airline seat management model for a single leg route when lower fare classes book first.

Operations Research, 40, 26–37.

Received August 2, 2000
Revised January 15, 2003
Accepted January 15, 2003
Final manuscript March 11, 2003

